The wavefield. $u(x,t) = A * \sin(2\pi (\frac{x}{\lambda} \pm \frac{t}{T})) = A * \sin(k * x \pm \omega * t)$

 $u(\theta(x,t)) = A * \sin(\theta)$ $\theta(x,t) = 2\pi (\frac{x}{\lambda} \pm \frac{t}{T})$ where θ is the phase of the $\sin(\theta)$ wavefield.

A = amplitude(m) $\lambda = wavelength(m)$ T = wave period(s)

x = position(m) t = time(s) $v(m/s) = \lambda * f = \lambda / T$

Linear frequency f = 1/T (cycle/s) Angular frequency $\omega = 2\pi/T = 2\pi f$ (radians/s)

 $k = 2\pi / \lambda$ (radians/m) angular wave number

- 1. (1 pt) What does the function u(x,t) describe (solve) and what are the units of the function.
- 2. What are the maximum and minimum amplitudes of u(x,t).
- 3. (1 pt) What is x/λ and what are the units.
- 4. (1 pt) What is t/T and what are the units.
- 5. (1 pt) What is $2\pi [x/\lambda t/T]$ and what are the units.
- 6. (1 pt) What is the periodicity of a sine and cosine function.
- 7. (1 pt) What is the equation that described the periodicity of a sin function.

15. (2 pt) Assume $x=[-2\lambda+2\lambda]$ (m), t=2 (s), $\lambda=2$ (m), T=4 (s), A=1 (m), quantitatively draw the sin wave. Is this wave frozen in space or time?

16. (2 pt) Assume t=[-2T +2T], x=2 (m), λ =2 (m), T= 4 (s), A=1 (m), quantitatively draw the sin wave. Is this wave frozen in space or time?

17. (3 pt) Assume t= $[0\ 2T]$ (s), x= $[0\ 2\lambda]$ (m), λ =2 (m), T= 4 (s), A=1 (m), quantitatively draw the 2-d image. Is this wave frozen in space or time? Draw a line which is the velocity or slowness (1/v) of the wave.

